
Potentiel des carburants alternatifs et possibilités de stockage

L'analyse rationnelle de la situation

Remplacer les carburants fossiles par des formes d'énergie alternatives est rationnellement justifié. L'augmentation de la concentration de CO_2 dans l'air à l'échelle mondiale est prouvée par des mesures. Les experts ont discuté lors de la mat-conference.ch des sources d'énergie qui assureront à l'avenir la transmission des véhicules routiers, des bateaux et des avions sur terre, sur mer et dans les airs. Un aperçu des conclusions de la conférence. Andreas Senger

orsqu'en novembre, les leaders de la recherche et du développement suisses se rencontrent lors de la mat-conference.ch (Mobility and Transportation) annuelle, un bouquet d'innovations techniques est présenté. Les exposés présentent aux participants de la conférence des solutions techniques pour relever les défis et canaliser les idées. Le fait qu'ils ne se focalisent pas uniquement sur les véhicules routiers, mais aussi sur les bateaux, les avions, les bus, les trains ou d'autres modes de transport, témoigne de la grande capacité d'innovation et du large éventail des hautes écoles suisses. Mais des représentants de l'industrie présenteront également de nouveaux développements. Lors du congrès du 7 novembre 2023, les intervenants se sont focalisés sur les énergies alternatives et donc les variantes de carburant. Pour faire progresser l'e-mobilité, la Suisse a besoin de beaucoup plus d'électricité propre. En outre, 70 à 90 TWh d'électricité renouvelable doivent être mis à disposition et 30 à 60 TWh de sources d'énergie synthétiques, renouvelables et chimiques sont nécessaires pour faire progresser la transition énergétique dans le secteur des trans-

Les réserves d'énergie disponibles dans le monde par rapport à l'énergie solaire arrivant chaque année sur la Terre et la consommation d'énergie annuelle globale sont représentées dans le cube. L'énergie annuelle pourrait être produite au moyen du photovoltaïque sur une surface de 800 × 800 km dans une région très ensoleillée. Photo: Research Gate GmbH

ports. La décarbonisation et la défossilisation ne peuvent être mises en œuvre qu'au prix des plus grands efforts. La priorité absolue est donnée à l'énergie solaire. En effet, le seul développement de l'énergie solaire permettrait de mettre à disposition de manière décentralisée et locale suffisamment d'énergie électrique pour faire progresser l'électrification de la mobilité individuelle. L'extension du réseau ou le développement d'autres sources d'électricité renouvelables (par exemple de nouvelles centrales au fil de l'eau) prennent tout simplement trop de temps. La Suisse a un grand potentiel: environ 1100 kWh d'énergie électrique par m² de surface photovoltaïque et par an sont réalisables. Certes, ce n'est pas

20 Janvier 2024 | **AUTOINSIDE**

le top en termes d'efficacité. Dans les régions désertiques comme Oman, 2200 kWh/m²/an sont possibles. En conséquence, l'énergie électrique doit être produite en Suisse et les carburants synthétiques doivent être importés de l'étranger.

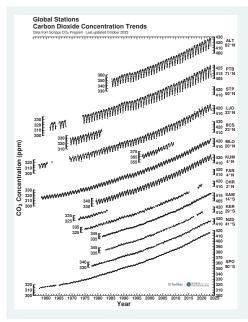
La finitude des énergies fossiles oblige à miser sur des alternatives. En matière d'énergie, l'offre et la demande jouent un rôle important. Tant que l'énergie fossile sera bon marché, les alternatives auront du mal à se développer. L'économie de marché simple pourrait accélérer cela: un prix mondial du CO2 sur les émissions pourrait en effet accélérer le changement, mais il est difficile, voire impossible, de le mettre en œuvre. Ce que les orateurs ont démontré à l'unisson: il n'y a pas qu'une seule solution. Il faudrait mettre en œuvre le renoncement de principe ou la limitation de la mobilité (ce qui va à l'encontre des positions fondamentales libérales), le développement de la mobilité électrique, la promotion de l'énergie de l'hydrogène ainsi que les possibilités de power-to-X et de stockage de chaleur.

L'orateur Philipp Haudenschild a montré, à titre d'exemple, comment les CFF entendent exploiter les locomotives et la flotte de générateurs de secours actuellement alimentés par des énergies fossiles en émettant moins de CO₂ grâce à l'utilisation d'huile végétale hydrogénée et donc de diesel biosourcé. L'HVO (Hydrotreated Vegetable Oil) a le potentiel de réduire les émissions de CO₂ des CFF jusqu'à 85%, d'abord en tant que mélange de diesel, puis en tant que substitut. La quantité disponible sur le marché est toutefois limitée.

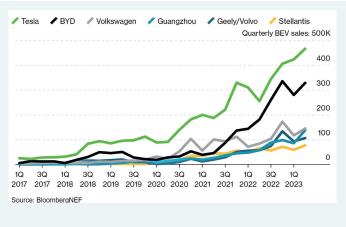
Dans le domaine de l'aviation également, des recherches sont menées pour trouver des alternatives au kérosène fossile et des possibilités d'utilisation sont testées. Urs Thomann. du constructeur d'avions suisse Pilatus, a présenté le défi à l'aide de quelques chiffres: en 2019, l'aéroport de Zurich a fait le plein de 1,4 million de tonnes de Jet A-1, le kérosène, carburant conventionnel des avions. À 43,1 GJ/t, cette quantité de kérosène contient 61,6 PJ d'énergie. En supposant un rendement optimiste de 80% du processus power-to-liquid, 77 PJ d'électricité sont nécessaires pour produire cette quantité de carburant de manière synthétique. Cela correspond à un prélèvement continu d'électricité sur le réseau de 2,44GW de puissance, soit plus que la puissance de production des centrales nucléaires de Beznau et Gösgen réunies. Produire des carWater (H₂O)

Water (H₂O)

Water (H₂O)


Carbon dioxide (CO₂)

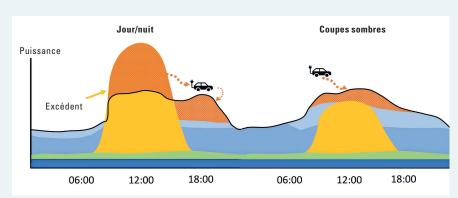
Since more CO₂ is taken from the atmosphere for the production of synthetic methane (CH₂)


Since more CO₂ is taken from the atmosphere for the production of synthetic methane than is subsequently emitted throughout the entire chain, this results in negative CO₂ emissions.

Non-energetic use

Bilan carbone négatif: si seul l'hydrogène H₂ était utilisé comme énergie à partir du gaz naturel synthétique, le carbone C serait retiré du cycle du CO₂ par pyrolyse, ce qui réduirait sa concentration dans l'air. Photo: Empa

Les lettres abrégées indiquent les stations de mesure du CO₂ qui mesurent la concentration locale sur plusieurs années. La tendance à la hausse est indiscutable et des mesures de réduction, y compris dans le domaine de la mobilité, sont impérativement nécessaires. Important: les émissions de CO₂ ne s'arrêtent pas aux frontières nationales. Les stations de mesure avec le code de lettres: ALT = Alert, NWT, Canada, PTB = Point Barrow, STP = Station P, LJO = La Jolla, BCS = Baja California Sur, Mexico, MLO = Mauna Loa Observatory, KUM = Cape Kumukahi, Hawaii, FAN = Fanning Island, CHR = Christmas Island, SAM = Samoa, KER = Kermadec Island, NZD = Baring Head, New Zealand, et SPO = South Pole. Photo: Programme CO2 de Scripps



Les «nouveaux» constructeurs comme Tesla ou les marques chinoises dépassent nettement les constructeurs européens établis en termes de ventes de VEB dans le monde. Cette tendance devrait se poursuivre cette année et poser de grands défis aux équipementiers européens. Si la transformation du véhicule à combustion en VEB n'est pas suffisamment réussie, certains constructeurs de renom pourraient également disparaître. Photo Bloomberg, BFH

burants synthétiques, c'est-à-dire des e-fuels, dans de telles quantités en Suisse n'est tout simplement pas réalisable. Ainsi, les idées visant à augmenter la production de carburant électrique en Suisse pour l'essence et le diesel sont utopiques. Les quantités d'électricité nécessaires pourraient être mises à disposition de manière plus efficace dans les régions ensoleillées du monde. Le talon d'Achille

de l'approvisionnement énergétique de la Suisse est et reste la production d'électricité propre. En 2019, les Suisses ont consommé 221 PJ (61,5 TWh) d'énergie électrique. L'augmentation de l'e-mobilité sur les routes ne peut être assurée que par le développement

Suite à la page 22

La VEB, avec sa grande batterie, doit impérativement servir de stockage pour transférer l'excédent de production PV de la journée vers la nuit. Sans grandes possibilités de stockage, le tournant énergétique ne réussira pas. Photo: Helion AG

Avec 110 participants, la mat-conference.ch qui a eu lieu le 7 novembre 2023 a affiché une bonne fréquentation. Photo: M. Nellen

de la production photovoltaïque ou d'autres productions renouvelables. Une réflexion importante à ce sujet: la distance moyenne parcourue par jour est d'environ 35 km sur les 600 km d'autonomie moyenne des VEB disponibles. De plus, ils sont stationnés plus de 90 % du temps. Une maison individuelle peut être alimentée pendant environ quatre jours par une batterie de véhicule HT. Si la capacité de stockage du parc automobile VEB attendu était activement utilisée, elle serait environ deux fois plus importante que toutes les centrales de pompage-turbinage de Suisse réunies. La production d'électricité est lissée, l'« électricité volatile » devient de l'« énergie en ruban ». Les différences jour/nuit ainsi que les périodes d'obscurité de plusieurs jours peuvent également être comblées. Il faudrait moins d'importations lorsque les prix du marché sont élevés. Toutefois, la compensation pour l'utilisation du stockage par batterie des VEB privées n'a pas encore été clarifiée.

Les véhicules branchés doivent, dans la mesure du possible, pouvoir se recharger sur des stations de recharge privées installées sur des places de stationnement existantes à domicile. La recharge à domicile répondra également à l'avenir au besoin des détenteurs de véhicules branchés. Pour ce faire, il convient d'équiper si possible toutes les places de stationnement privées dans les immeubles d'habitation d'une infrastructure de recharge privée. D'ici 2035, jusqu'à deux millions de points de charge privés devraient voir le jour en Suisse. Le développement de l'infrastructure de recharge privée dans les bâtiments ne s'improvise pas. Outre les incitations, il faut une sécurité de planification et d'investissement. En 2035, 400 000 à 1000000 véhicules rechargeables en Suisse ne disposeront d'aucune possibilité de recharge privée (à domicile ou sur le lieu de travail).

Un carburant alternatif doit également être utilisé dans les airs. L'École polytechnique fédérale de Lausanne développe et effectue des recherches sur de noveaux types d'avions propulsés à l'hydrogène. Photo: EPFL

Pour les détenteurs de véhicules sans place de stationnement privée et sans possibilité de recharge privée, il faut un réseau de recharge accessible à tous, si possible à proximité du domicile. Une électrification poussée nécessite une couverture de base en infrastructures de recharge accessibles à tous sur l'ensemble du territoire (pour la recharge à destination ou la recharge rapide en cours de route). D'ici 2035, le besoin en points de recharge accessibles à tous en Suisse passera à 19000 à 84000, dont 11 000 à 23 000 points de recharge d'au moins 50 kW. Dans tous les cas, il faudra un mélange de différentes options de recharge en Suisse (recharge à domicile, au travail, dans le quartier, à destination et recharge rapide). L'étendue et l'importance du réseau de recharge accessible à tous varieront selon les régions. Pour que la mobilité électrique fasse partie de la solution du futur système électrique de la Suisse, les véhicules rechargeables doivent en premier lieu se charger de manière flexible (en termes de puissance et de moment) pendant les longues durées de stockage. Les opérations de charge doivent pouvoir être gérées par des incitations tarifaires et la commercialisation de la flexibilité. La capacité de batterie nécessaire pour la mobilité en 2030 est sept fois supérieure à celle de 2022. L'électrification du secteur des transports progresse grâce à des stratégies de soutien politique. Le recyclage et une économie circulaire associée sont des stratégies clés pour promouvoir la durabilité de la chaîne d'approvisionnement/de valeur. Ce n'est qu'avec des données disponibles sur la durée de vie qu'il est possible de parvenir à une économie circulaire et de prolonger la première durée de vie de la batterie.

Événement

Le prochain événement aura lieu le 6 novembre 2024

Lire les exposés de l'édition

22 Janvier 2024 | AUTOINSIDE