

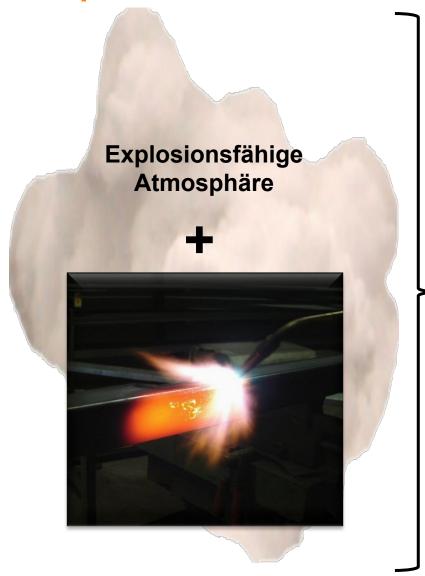
Explosionsschutz

Suva, Bereich Chemie, Physik und Ergonomie, Reto Kellerhals AGVS - UWI Weiterbildung, 10. und 24.11.2022, Mobile City Bern

Agenda

- Explosionsfähige Atmosphäre
- Flammpunkt ab wann wird`s gefährlich
- Chemikalien-Kennzeichnung
- EX-Zonen
- Zündquellen
- Dokumentation

Explosionsfähige Atmosphäre


Voraussetzungen für eine Explosion

Explosionsschutz

Brennbare Stoffe

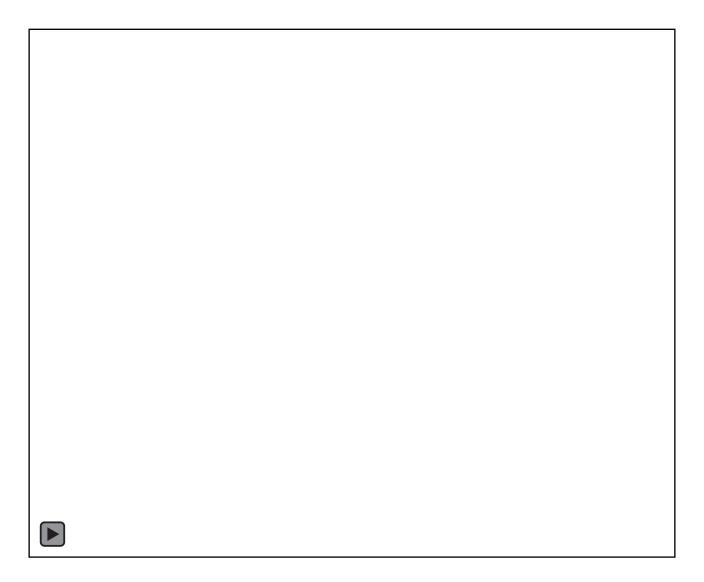
Brennbare Gase wie: Wasserstoff, Azetylen, Erdgas/Biogas, Flüssiggas usw.

→ Sofortige Verteilung in Luft

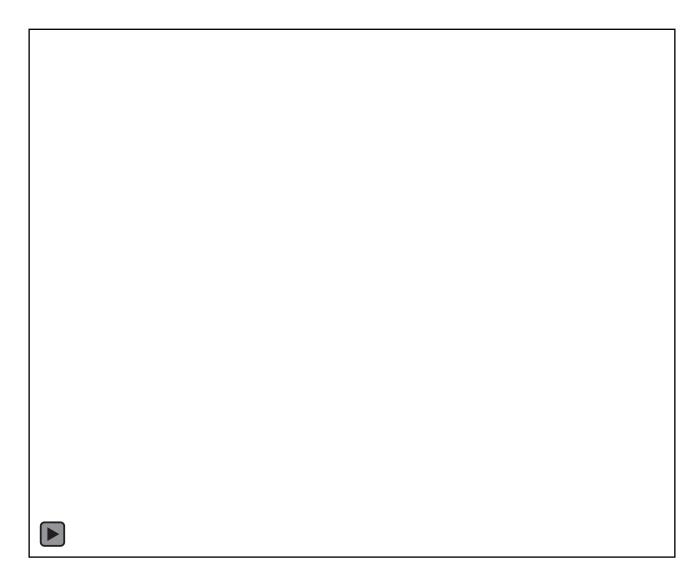
Brennbare Flüssigkeiten wie: Benzin, Nitroverdünner, Aceton, Heizöl usw.

→ Flüssigkeit verdampft → Vermischung in Luft Wichtigste Kenngrösse: Flammpunkt (= Dampfkonzentration)

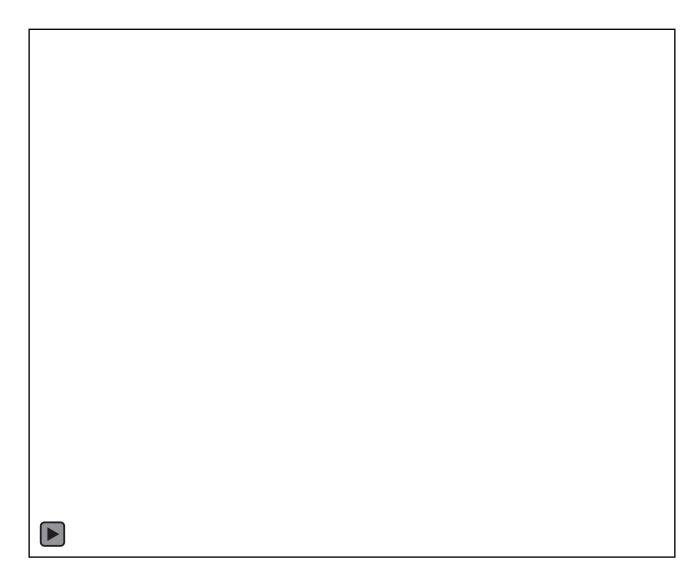
Aerosole (Nebel) brennbarer Flüssigkeiten, z.B. beim Spritzlackieren


→ Vermischung in Luft, inhomogene Verteilung

Brennbare Stäube wie: Mehl, Zucker, Holzstaub, Kunststoffpulver usw.

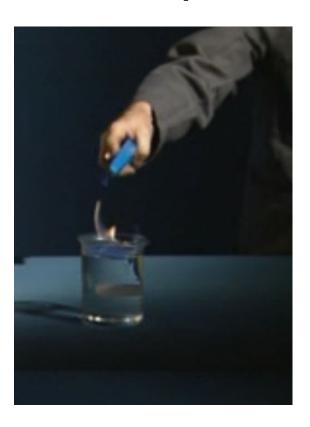

→ Teilchengrösse <0.5 mm → Vermischung in Luft, inhomogene Verteilung Wichtigste Kenngrössen: Brennzahl, Staubexplosionskenngrösse (K_{St})

Anzünden brennbarer Flüssigkeiten – Benzin



Anzünden brennbarer Flüssigkeiten – Brennsprit

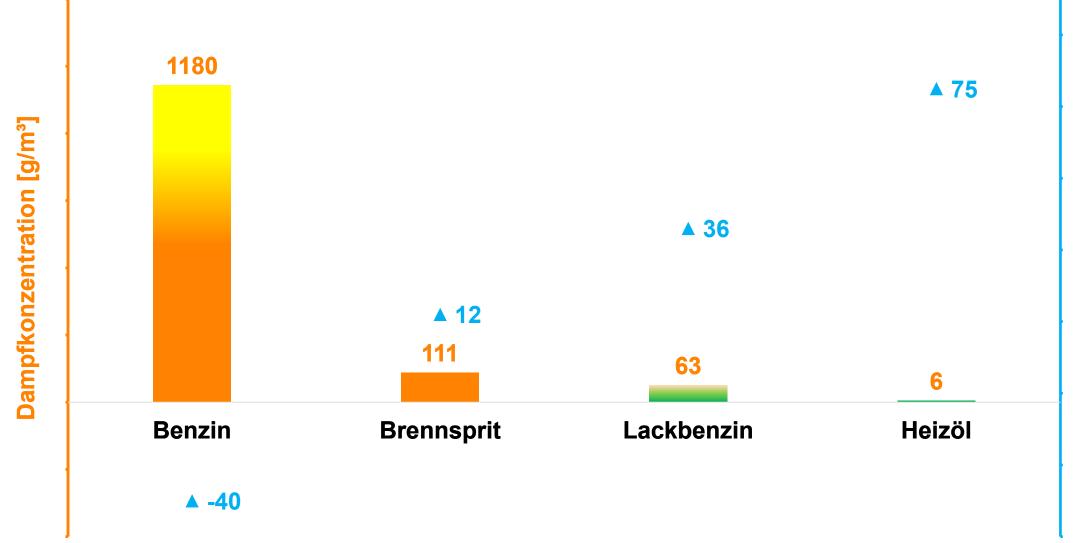
Anzünden brennbarer Flüssigkeiten – Lackbenzin



Anzünden brennbarer Flüssigkeiten – ab wann wird es gefährlich?

Benzin

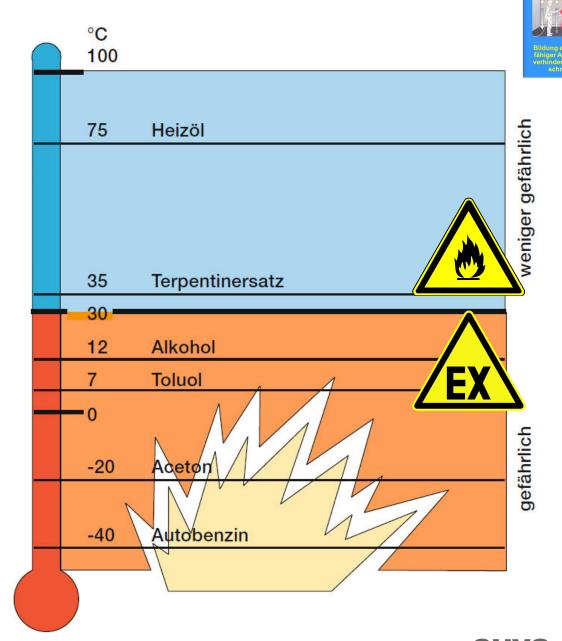
Brennsprit



Lackbenzin

Dampfkonzentration (20 °C; g/m³) – Flammpunkt (°C)

Flammpunkt – Definition und Beispiele


Definition:

Der Flammpunkt ist die tiefste Temperatur, bei der eine Flüssigkeit genügend Dampf entwickelt, um mit der umgebenden Luft ein Gemisch zu bilden, dass sich beim Annähern einer Flamme kurzzeitig entzündet.

- Leichtbrennbare Flüssigkeit: Flammpunkt kleiner 30 °C
 - Ex-Schutzmassnahmen notwendig
- Brennbare Flüssigkeit: Flammpunkt kleiner 60 °C
 - Ex-Schutzmassnahmen evtl. notwendig

Quelle: EKAS RL brennbare Flüssigkeiten (www.suva.ch/1825.d)

Explosionsschutz

Kennzeichnung brennbarer Flüssigkeiten (EU / GHS Kennzeichnung)

Toluol

Flammpunkt: 7 °C

N,N Dimethylformamid (DMF)

Flammpunkt: 58 °C

Signalwort -> Gesundheitsgefährdung

Wo finde ich Stoffdaten zu Flammpunkt usw.

- Sicherheitsdatenblatt des Lieferanten
- Literaturdaten:
 - Sicherheitstechnische Kenngrössen von Flüssigkeiten und Gasen (<u>www.suva.ch/1469.d</u>)
 - GESTIS-Stoffdatenbank (https://www.dguv.de/ifa/gestis/gestis-stoffdatenbank/index.jsp)
- Internetrecherche
- Messauftrag an spezialisiertes Labor
- usw.

Stoffdaten Sicherheitsdatenblatt – immer im Abschnitt 9

ABSCHNITT 9: Physikalische und chemische Eigenschaften

Angaben zu den grundlegenden physikalischen und chemischen Eigenschaften 9.1

Aggregatzustand flüssig

Farbe farblos

Geruch charakteristisch

Schmelzpunkt/Gefrierpunkt -95 °C bei 1.013 hPa (ECHA)

Siedepunkt oder Siedebeginn und Siedebereich 110,6 °C bei 1.013 hPa (ECHA)

Entzündbarkeit entzündbare Flüssigkeit gemäß GHS-Kriterien

39 g/m³ (UEG) - 300 g/m³ (OEG) / 1,1 Vol.-% (UEG) - 7,1 Vol.-% (OEG) Untere und obere Explosionsgrenze

4,4 °C bei 1.013 hPa (ECHA) Flammpunkt

480 °C bei 1.013 hPa (ECHA) (Zündtemperatur Zündtemperatur

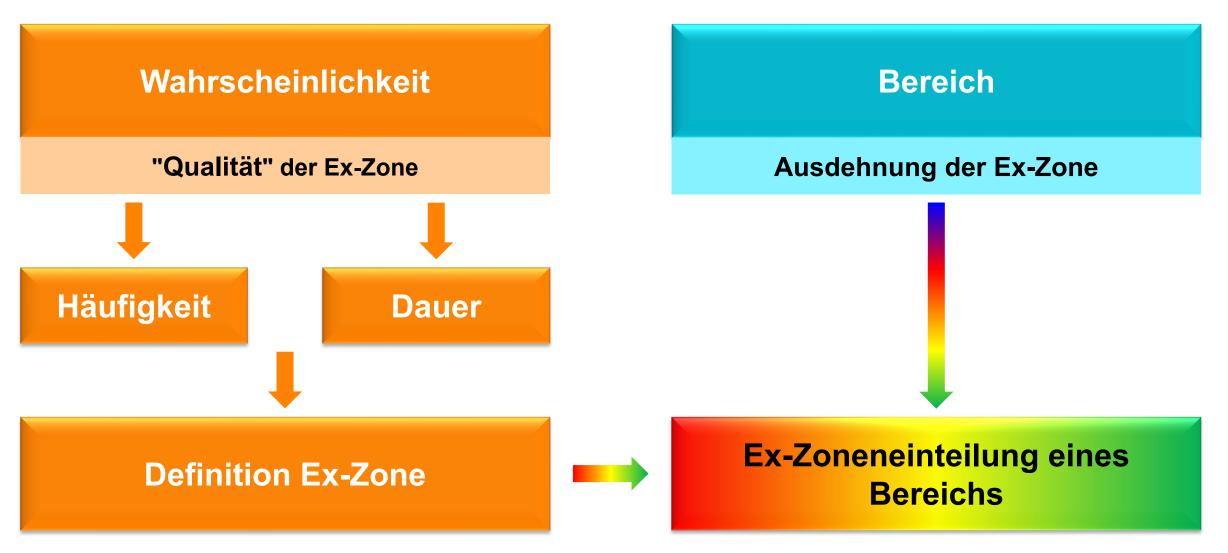
(Flüssigkeiten und Gase))

Explosionsschutzmassnahmen – ATEX 137 / 153

Vorbeugend

Explosionsfähige Atmosphäre verhindern

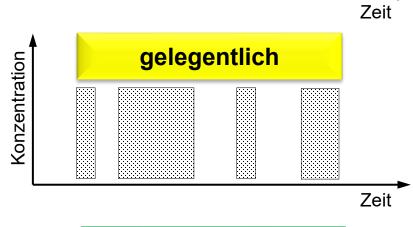
- Ersatz der brennbaren Stoffe durch solche, die keine explosionsfähige Atmosphäre bilden
- Verwendung geschlossener Systeme, die verhindern, dass explosionsfähige Atmosphäre ausserhalb von Apparaturen auftreten kann
- Lüftungsmassnahmen, welche die Bildung explosionsfähiger Atmosphäre verhindern oder einschränken
- Konzentrationsüberwachung der Umgebung die im Ereignisfall automatisch weitere Schutzmassnahmen auslöst


Bemerkung: Für die detaillierte Beschreibung aller Massnahmen: www.suva.ch/2153.d
Kapitel 2 «Massnahmen, welche die Bildung gefährlicher explosionsfähiger Atmosphäre verhindern oder einschränken»

EX-Zonen und deren Ausdehnung

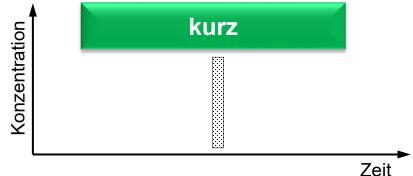
Auftreten explosionsfähiger Atmosphäre bewerten

Ex-Zonen für Gase/Dämpfe/Nebel und Stäube


Bereich indem eine explosionsfähige Atmosphäre ständig, über lange Zeit oder häufig vorhanden ist

Zone 0 – Gase, Dämpfe, Nebel

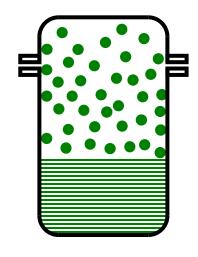
Zone 20 – Stäube


Bereich in dem sich bei Normalbetrieb gelegentlich eine explosionsfähige Atmosphäre bilden kann

Zone 1 – Gase, Dämpfe, Nebel

Zone 21 – Stäube

Bereich, in dem bei Normalbetrieb eine explosionsfähige Atmosphäre normalerweise nicht oder aber nur kurzzeitig auftritt.



Zone 2 – Gase, Dämpfe, Nebel

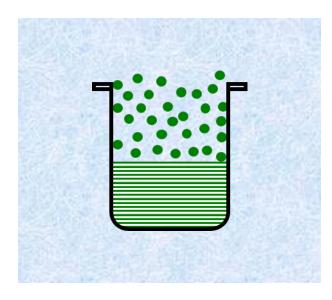
Zone 22 – Stäube

Faustregeln: Im Innern von Behältern

Wenn die explosionsfähige Atmosphäre während mehreren Stunden vorliegen kann:

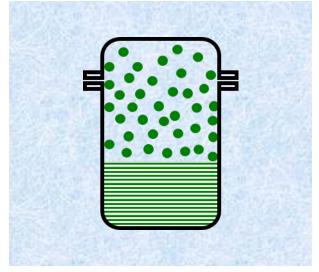
Gase und Dämpfe
 Zone 0

Stäube



¹ Sedimentation von Stäuben berücksichtigen

Faustregeln: Umfeld von Behältern


Offenes System:

Gase und Dämpfe Zone 1

Stäube

Zone 22 (21)

Geschlossenes System

Gase und Dämpfe

Zone 2

Stäube

Zone NG¹

- ¹ Bei undichten System Zone 22
 - NG nicht gefährdet (k.g.e.A. - keine gefährliche explosionsfähige Atmosphäre)

Ausdehnung der Ex-Zonen

Bildung explosionsfähiger Atmosphäre

Austrittsmenge / Verhalten / Tätigkeit

- Quellstärke
- Oberfläche
- Dichte

Technische Massnahmen die das Ausbreiten einschränken

- Apparative und bauliche Gegebenheiten
- Lüftungsverhältnisse

Praxis in der Schweiz – Merkblatt Explosionsschutz (www.suva.ch/2153.d)

Praxis in der Schweiz

Harmonisiert nach internationalen Standards

Inhalt Merkblatt:

- Grundlagen Ex-Schutz
 - Atmosphäre
 - Zündquellen
 - Konstruktiver Ex-Schutz
 - Dokumentation
- Beispielsammlung zu Ex-Zoneneinteilungen

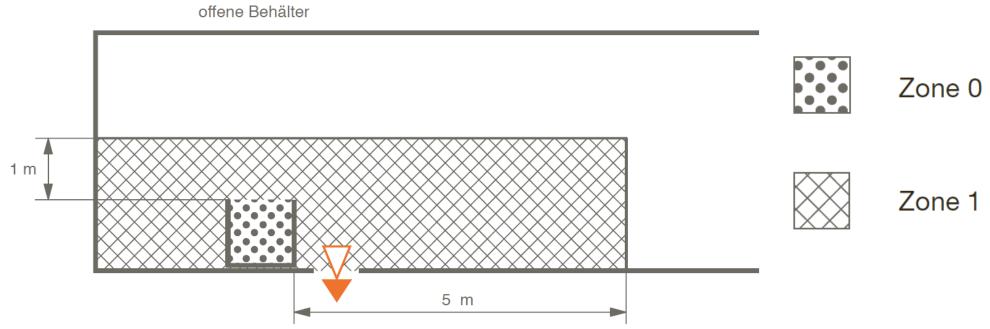
Merkblatt Explosionsschutz - Aufbau

Kapitelstruktur:

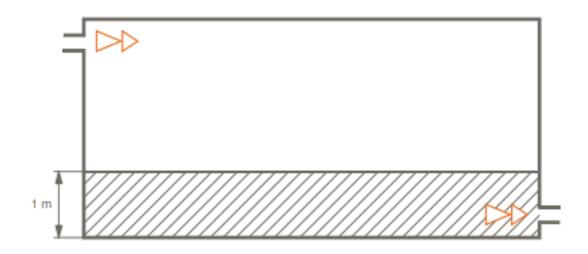
- 1. Prinzipien Ex-Schutz
- 2. Bildung Ex-Atmosphäre
- 3. Vermeiden von Zündquellen
- 4. Konstruktiver Ex-Schutz
- 5. Forderungen 1999/92/EG
- 6. Organisatorische Massnahmen
- 7. Literatur

Beispielsammlung

Aufbau Beispielsammlung:

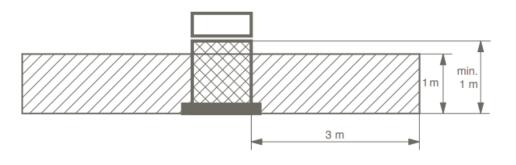

- 1. Lager leichtbrennbare Flüssigkeiten
- 2. Lager Flüssiggas (= Gase schwerer als Luft)
- 3. Lager Gase leichter als Luft
- 4. Umgang mit leichtbrennbaren Flüssigkeiten
- 5. Umgang mit brennbaren Gasen (= schwerer & leichter als Luft)
- 6. Biogasanlagen und Abwasserreinigungsanlagen
- 7. Chemische und pharmazeutische Industrie
- 8. Verwenden von Farben und Lacken
- 9. Arbeitsgruben
- 10. Brennbare Stäube

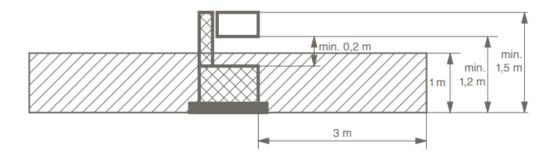
Ex-Zoneneinteilung – Beispielsammlung Merkblatt Explosionsschutz


- Repräsentative Beispiele kein «Rezeptbuch»
- Einheitliche Zonen keine «Mischzonen»
- Rechteckige Geometrie keine kugel- oder kegelförmige Zonen
 - Umfüllen (z.B. Zapfstelle, Umpumpen) Mischanlage (z.B. Rühren, Mischen)

Weitere Beispiele Ex-Zoneneinteilung

Lagern von leichtbrennbare Flüssigkeiten in einem Raum.

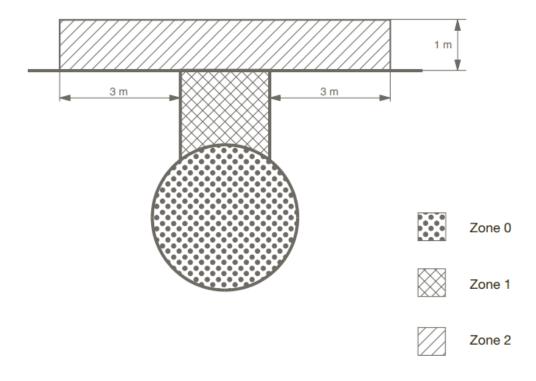

Die dargestellten Beispiele basieren auf der Annahme einer guten, freien natürlichen Lüftung oder einer ausreichenden künstlichen Lüftung.


4.4 Tankstelle für leichtbrennbare Flüssigkeiten (mit Pendelung) mit elektronischem Rechenwerk (im Freien)

Gasdichte Platte bzw. Durchführungen zwischen dem hydraulischen und dem elektronischen Teil

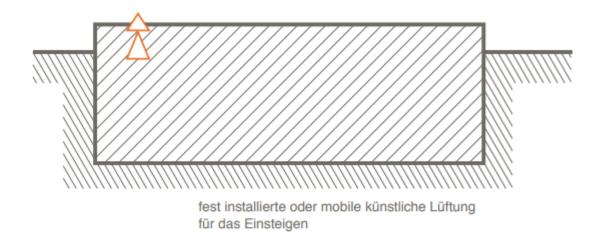
4.4.1 Gehäuse des Rechenwerks min. IP 54

4.4.2 Gehäuse des Rechenwerks min. IP 33

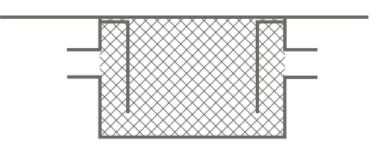

Zone 2

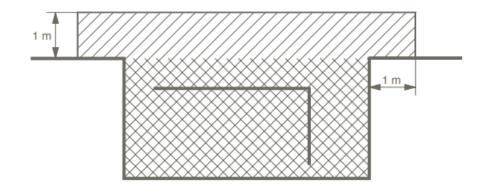
Weitere Beispiele Ex-Zoneneinteilung

Domschacht


1.2.2 Erdverlegte Tankanlagen für leichtbrennbare Flüssigkeiten

Weitere Beispiele Ex-Zoneneinteilung


Regenbecken, Kanalisation keine Zone, aber Ex-Schutz bei festinstallierten Geräten (z.B Lampen)

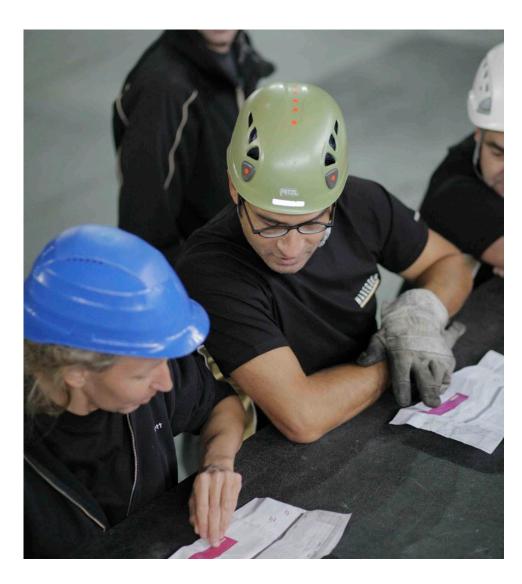


Abscheider für leichtbrennbare Flüssigkeiten

4.8.1 Geschlossener Abscheider

4.8.2 Offener Abscheider

Zone 1



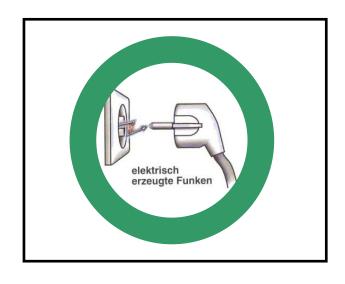
Zone 2

Planung der Explosionsschutzmassnahmen

Berücksichtigen der:

- Normalen Betriebsbedingungen
- Anfahr- und Abstellvorgänge

Einbeziehen von:


- Möglichen Betriebsstörungen
- Menschlichem Fehlverhalten
- Vorhersehbarem Missbrauch

Zündquellen

In Ex- Zonen – Vermeiden wirksamer Zündquellen

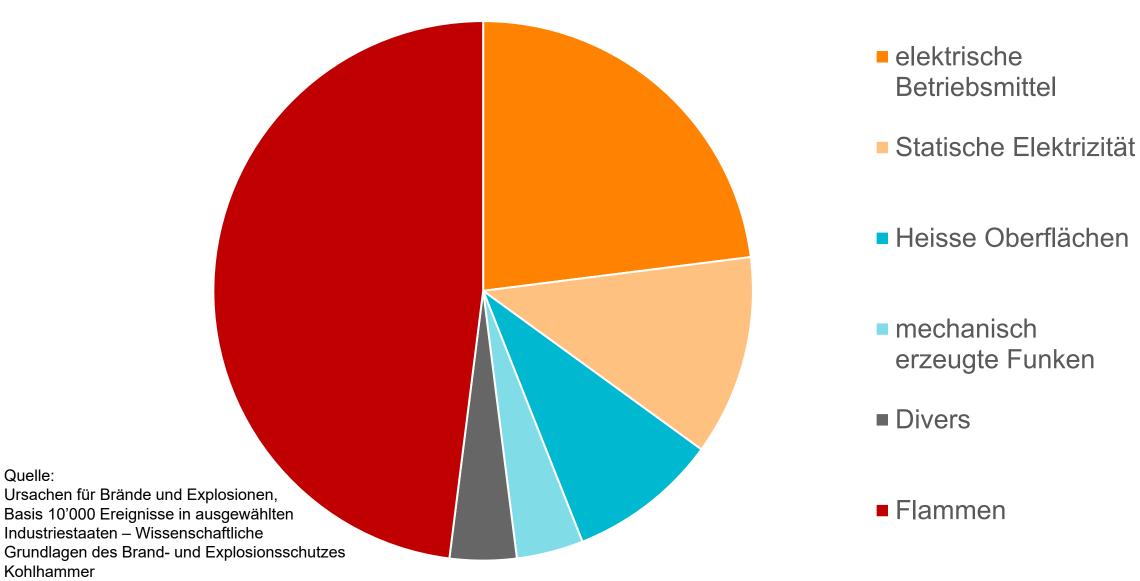
Entfernen

Völlig unwirksam machen

Wahrscheinlichkeit des Wirksamwerdens verringern

Beispiele wirksamer Zündquellen

- a) heisse Oberfläche
- b) Glimmnest
- c) elektrostatischer Funke
- d) Flamme
- e) elektrischer Funke
- f) Gewitterblitz
- g) mechanisch erzeugter Funke
- h) Kein Bild: Chemische Reaktion


Bemerkung:

Die Norm SN EN 1127-1 (Explosionsfähige Atmosphären - Explosionsschutz - Teil 1: Grundlagen und Methodik) listet abschliessend 13 Zündquellen auf.

Explosionsereignisse – Häufigkeit wirksame Zündquellen

Kohlhammer

Quelle:

Zugelassene Arbeitsmittel nach ATEX 95 (2014/34/EU) und IEC 60079-0

Zone 0 / Zone 20:

Bereich indem eine explosionsfähige Atmosphäre ständig, über lange Zeit oder häufig vorhanden ist Ex-Zone 0: Nur Geräte der

Kategorie 1G

<u>IEC</u>

Geräteschutzniveau (EPL) Ga

Ex-Zone 20: Nur Geräte der

Kategorie 1D

Geräteschutzniveau (EPL) Da

Zone 1 / Zone 21:

Bereich in dem sich bei Normalbetrieb gelegentlich eine explosionsfähige Atmosphäre bilden kann Ex-Zone 1: Nur Geräte der

Kategorie 1G oder 2G

Geräteschutzniveau (EPL) Gb

Ex-Zone 21: Nur Geräte der

Kategorie 1D oder 2D

Geräteschutzniveau (EPL) Db

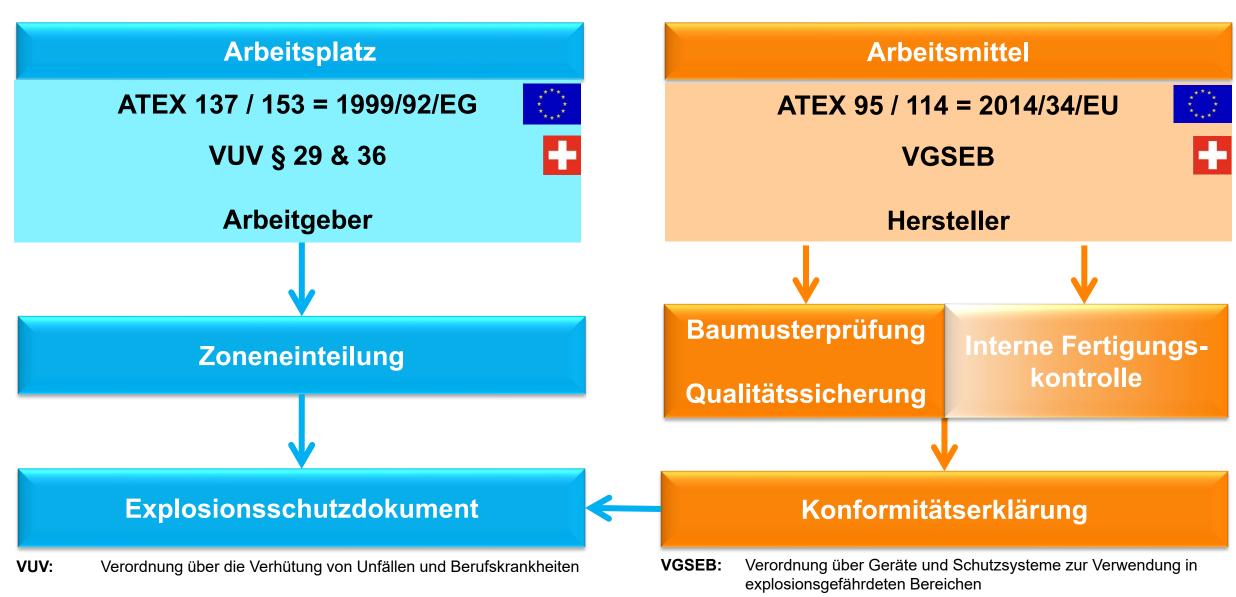
Zone 2 / Zone 22:

Bereich, in dem bei Normalbetrieb eine explosionsfähige Atmosphäre normalerweise nicht oder aber nur kurzzeitig auftritt. Ex-Zone 2: Nur Geräte der

Kategorie 1G, 2G oder 3G

Geräteschutzniveau (EPL) Gc

Ex-Zone 22: Nur Geräte der


Kategorie 1D, 2D oder 3D

Geräteschutzniveau (EPL) Dc

Explosionsschutzmassnahmen – rechtliche Basis Schweiz

Massnahme Explosionsschutzdokument

Die Artikel 29 und 36 der VUV sind im Merkblatt Explosionsschutz (<u>www.suva.ch/2153.d</u>) konkretisiert. Das bedeutet für die Dokumentation:

- Im Rahmen seiner Pflichten stellt der Arbeitgeber sicher, dass ein Dokument (nachstehend «Explosionsschutzdokument» genannt) erstellt und auf dem letzten Stand gehalten wird.
- Das Explosionsschutzdokument wird vor Aufnahme der Arbeit erstellt; es wird überarbeitet, wenn wesentliche Änderungen, Erweiterungen oder Umgestaltungen des Arbeitsumfeldes, der Arbeitsmittel oder des Arbeitsablaufes vorgenommen werden.
- Der Arbeitgeber kann bereits vorhandene Explosionsrisikoabschätzungen, Dokumente oder andere gleichwertige Berichte miteinander kombinieren

Massnahme für Kontrolleure

- Garagen keine Zone –Begründung: gute Durchlüftung bei Arbeiten, Zone 2 nicht durchsetzbar wegen Zündquellen.
- Früher bei Arbeitsschluss Zone 2, ganze Garage.
- → Vorsicht!! Explosionsfähige Atmosphäre neben Zündquellen jederzeit möglich.
- Zone 2 keine Massnahmen für Kontrolleure bei Schuhwerk, Kleidung, Natel, etc. Aber Achtung: bei Zone 1 (umfüllen): Ableitfähiger Boden, ableitfähige Schuhe, keine Natel, etc.

Danke für Ihre Aufmerksamkeit

suva